Elastic cloud–IoT architecture for smart city traffic management: Performance, energy efficiency, and real-time analytics
Abstract
Rapid urbanization and increasing vehicle population have led to severe traffic congestion and pollution in modern cities. Smart city initiatives leverage Internet of Things (IoT) technology to address these challenges and optimize traffic management systems. This paper explores the role of cloud computing in enhancing IoT-based traffic management by providing scalable data processing, real-time analytics, and intelligent decision-making capabilities. Cloud platforms enable seamless integration of distributed IoT devices, such as sensors and cameras, that collect traffic data. Using cloud-based machine-learning models, this system can predict traffic patterns, manage congestion, and improve road safety. The paper also discusses the benefits, challenges, and potential solutions for implementing cloud-enabled traffic management in smart cities, emphasizing improved efficiency, reduced costs, and enhanced sustainability.
Keywords:
Cloud computing, Internet of things, Real-time analysis, Urban mobility, Machine learningReferences
- [1] Li, D., Zuo, Q., & Zhang, Z. (2022). A new assessment method of sustainable water resources utilization considering fairness-efficiency-security: A case study of 31 provinces and cities in China. Sustainable cities and society, 81, 103839. https://doi.org/10.1016/j.scs.2022.103839
- [2] Ceder, A. A., & Jiang, Y. (2020). Route guidance ranking procedures with human perception consideration for personalized public transport service. Transportation research part c: emerging technologies, 118, 102667. https://doi.org/10.1016/j.trc.2020.102667
- [3] Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE internet of things journal, 1(1), 22–32. https://doi.org/10.1109/JIOT.2014.2306328
- [4] Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future generation computer systems, 29(7), 1645–1660. https://doi.org/10.1016/j.future.2013.01.010
- [5] Botta, A., De Donato, W., Persico, V., & Pescapé, A. (2016). Integration of cloud computing and internet of things: A survey. Future generation computer systems, 56, 684–700. https://doi.org/10.1016/j.future.2015.09.021
- [6] Shi, S., Yin, Z., Mei, Z., & Wang, L. (2021). Dark channel based multiframe super-resolution reconstruction. IEEE access, 9, 141693–141702. https://doi.org/10.1109/ACCESS.2021.3120058
- [7] Zaini, N., Ean, L. W., Ahmed, A. N., Abdul Malek, M., & Chow, M. F. (2022). PM2. 5 forecasting for an urban area based on deep learning and decomposition method. Scientific reports, 12(1), 17565. https://www.nature.com/articles/s41598-022-21769-1
- [8] Alam, T. (2021). Cloud-based IoT applications and their roles in smart cities. Smart cities, 4(3), 1196–1219. https://doi.org/10.3390/smartcities4030064
- [9] Haseeb, K., Din, I. U., Almogren, A., Ahmed, I., & Guizani, M. (2021). Intelligent and secure edge-enabled computing model for sustainable cities using green internet of things. Sustainable cities and society, 68, 102779. https://doi.org/10.1016/j.scs.2021.102779
- [10] Yusuf, S. A., Khan, A., & Souissi, R. (2024). Vehicle-to-everything (V2X) in the autonomous vehicles domain--A technical review of communication, sensor, and AI technologies for road user safety. Transportation research interdisciplinary perspectives, 23, 100980. https://doi.org/10.1016/j.trip.2023.100980
- [11] Bai, L., Wong, W., Xu, P., Liu, P., Chow, A. H. F., Lam, W. H. K., … & Wong, S. C. (2024). Fusion of multi-resolution data for estimating speed-density relationships. Transportation research part c: emerging technologies, 165, 104742. https://doi.org/10.1016/j.trc.2024.104742
- [12] Putra, M. A., Harjoko, A., & Wahyono. (2025). A systematic review on vision-based traffic density estimation for intelligent transportation systems. IET intelligent transport systems, 19(1), e70038. https://doi.org/10.1049/itr2.70038
- [13] Herrera, J. C., Work, D. B., Herring, R., Ban, X. J., Jacobson, Q., & Bayen, A. M. (2010). Evaluation of traffic data obtained via GPS-enabled mobile phones: The mobile century field experiment. Transportation research part c: emerging technologies, 18(4), 568–583. https://doi.org/10.1016/j.trc.2009.10.006
- [14] Zadeh, A., Liang, P. P., & Morency, L. P. (2020). Foundations of multimodal co-learning. Information fusion, 64, 188–193. https://doi.org/10.1016/j.inffus.2020.06.001
- [15] Mekki, K., Bajic, E., Chaxel, F., & Meyer, F. (2019). A comparative study of LPWAN technologies for large-scale IoT deployment. ICT express, 5(1), 1–7. https://doi.org/10.1016/j.icte.2017.12.005
- [16] Kiran, M., Pouyoul, E., Mercian, A., Tierney, B., Guok, C., & Monga, I. (2018). Enabling intent to configure scientific networks for high performance demands. Future generation computer systems, 79, 205–214. https://doi.org/10.1016/j.future.2017.04.020
- [17] Gomes, B., Coelho, J., & Aidos, H. (2023). A survey on traffic flow prediction and classification. Intelligent systems with applications, 20, 200268. https://doi.org/10.1016/j.iswa.2023.200268
- [18] Qi, P., Pan, C., Xu, X., Wang, J., Liang, J., & Zhou, W. (2025). A review of dynamic traffic flow prediction methods for global energy-efficient route planning. Sensors, 25(17), 5560. https://doi.org/10.3390/s25175560
- [19] Alabdouli, H., Hassan, M. S., & Abdelfatah, A. (2025). Enhancing route guidance with integrated V2X communication and transportation systems: A review. Smart cities, 8(1), 24. https://doi.org/10.3390/smartcities8010024
- [20] Singh, N., & Kumar, K. (2022). A review of bus arrival time prediction using artificial intelligence. Wiley interdisciplinary reviews: data mining and knowledge discovery, 12(4), e1457. https://doi.org/10.1002/widm.1457
- [21] Teledjieu, I. D., & Shafique, I. (2025). CityPulse: Real-time traffic data analytics and congestion prediction. https://arxiv.org/abs/2506.01971
- [22] Koch, L., Brinkmann, T., Wegener, M., Badalian, K., & Andert, J. (2023). Adaptive traffic light control with deep reinforcement learning: An evaluation of traffic flow and energy consumption. IEEE transactions on intelligent transportation systems, 24(12), 15066–15076. https://doi.org/10.1109/TITS.2023.3305548
- [23] Veitch, E., & Rhodes, E. (2024). A cross-country comparative analysis of congestion pricing systems: Lessons for decarbonizing transportation. Case studies on transport policy, 15, 101128. https://doi.org/10.1016/j.cstp.2023.101128
- [24] Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H., Morrow, M. J., & Polakos, P. A. (2017). A comprehensive survey on fog computing: State-of-the-art and research challenges. IEEE communications surveys & tutorials, 20(1), 416–464. https://doi.org/10.1109/COMST.2017.2771153
- [25] Dastjerdi, A. V., & Buyya, R. (2016). Fog computing: Helping the internet of things realize its potential. Computer, 49(8), 112–116. https://doi.org/10.1109/MC.2016.245
- [26] Zhuang, L., Wang, L., Zhang, Z., & Tsui, K. L. (2018). Automated vision inspection of rail surface cracks: A double-layer data-driven framework. Transportation research part c: emerging technologies, 92, 258–277. https://doi.org/10.1016/j.trc.2018.05.007
- [27] Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A., … & Chiroma, H. (2016). The role of big data in smart city. International journal of information management, 36(5), 748–758. https://doi.org/10.1016/j.ijinfomgt.2016.05.002
- [28] Davis, W. C., & Wang, Z. J. (2015). A mobile retail pos: design and implementation [presentation]. Proceedings of the 2015 workshop on mobile big data (pp. 49–51). https://doi.org/10.1145/2757384.2757391
- [29] Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE internet of things journal, 3(6), 854–864. https://doi.org/10.1109/JIOT.2016.2584538
- [30] Khan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open challenges. Future generation computer systems, 82, 395–411. https://doi.org/10.1016/j.future.2017.11.022
- [31] Deepak, J. R., Raja, V. K. B., Kavitha, K. R., Reddy, K. G., & Venkat, M. (2021). Microstructure and metallurgical property investigation of welded IRSM 41-97 rail steel joints. Materials today: proceedings, 47, 4827–4832. https://doi.org/10.1016/j.matpr.2021.06.056
- [32] Acharya, K., & Ghoshal, D. (2018). Detection of a shadow of animated video frames in RGB Color Space. Procedia computer science, 132, 103–108. https://doi.org/10.1016/j.procs.2018.05.168
- [33] Xu, L. Da, He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE transactions on industrial informatics, 10(4), 2233–2243. https://doi.org/10.1109/TII.2014.2300753
- [34] Li, W., Chen, A., Wang, X., Li, T., Penty, R. V, & Liu, X. (2020). Fast-settling two-stage automatic gain control for multi-service fibre-wireless fronthaul systems. IEEE access, 8, 145077–145086. https://doi.org/10.1109/ACCESS.2020.3014974
- [35] Gopikrishnan, U., & Jose, R. (2020). DriveCare: A real-time vision based driver drowsiness detection using multiple convolutional neural networks with kernelized correlation filters (MCNN-KCF). 2020 IEEE 5th international conference on computing communication and automation (ICCCA) (pp. 408–413). IEEE. https://doi.org/10.1109/ICCCA49541.2020.9250868
- [36] Li, S., Xu, L. Da, & Zhao, S. (2015). The internet of things: A survey. Information systems frontiers, 17, 243–259. https://doi.org/10.1007/s10796-014-9492-7
- [37] Al Nuaimi, E., Al Neyadi, H., Mohamed, N., & Al-Jaroodi, J. (2015). Applications of big data to smart cities. Journal of internet services and applications, 6(1), 1–15. https://doi.org/10.1186/s13174-015-0041-5
- [38] Zheng, Y., Capra, L., Wolfson, O., & Yang, H. (2014). Urban computing: concepts, methodologies, and applications. ACM transactions on intelligent systems and technology (TIST), 5(3), 1–55. https://doi.org/10.1145/2629592
- [39] Chen, B., Pei, X., & Chen, Z. (2019). Research on target detection based on distributed track fusion for intelligent vehicles. Sensors, 20(1), 56. https://doi.org/10.3390/s20010056
- [40] Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., & Buyya, R. (2017). iFogSim: A toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments. Software: practice and experience, 47(9), 1275–1296. https://doi.org/10.1002/spe.2509
- [41] Ahmed, N. K., Atiya, A. F., Gayar, N. El, & El-Shishiny, H. (2010). An empirical comparison of machine learning models for time series forecasting. Econometric reviews, 29(5–6), 594–621. https://doi.org/10.1080/07474938.2010.481556
- [42] Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information systems, 47, 98–115. https://doi.org/10.1016/j.is.2014.07.006